1,417 research outputs found

    The crane split and sequencing problem with clearance and yard congestion constraints in container terminal ports

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Computation for Design and Optimization Program, 2006.Includes bibliographical references (p. 93-94).One of the steps in stowage planning is crane split and sequencing, which determines the order of container discharging and loading jobs quay cranes (QCs) perform so that the completion time (or makespan) of ship operation is minimized. The vessel's load profile, number of bays and number of allocated QCs are known to port-planners hours before its arrival, and these are input parameters to the problem. The problem is modeled as a large-scale linear IP where the planning horizon is discretized into time intervals and at most one QC can be assigned to a bay at any period. We introduce clearance constraints, which prevent adjacent QCs from being positioned too close to one another, and yard congestion constraints, which prevent yard storage locations from being overly accessed at any time. This makes the model relevant in an industrial setting. We examine the case only a single ship arrives at port, and the case where multiple ships berth at different times in the planning horizon. The berth time of each ship and number of ships arriving is known. The problem is difficult to solve without any special technique applied. For the single-ship problem, a heuristic approach, which produces high-quality solutions, is developed.(cont.) A branch-and-price method re-formulates the problem into a set-covering form with huge number of variables; standard variable branching provides optimal solutions very efficiently. For the multiple-ship problem, a solution strategy is developed combining Lagrangian relaxation, branch-and-price and heuristics. After relaxing the yard congestion constraints, the problem decomposes into smaller sub-problems, each involving one ship; the sub-problems are then re-formulated into a column generation form and solved using branch-and-price to obtain Lagrangian solutions and lower-bound values. Lagrangian multipliers are iteratively updated using the sub-gradient method. A primal heuristic detects and eliminates infeasibilities in the Lagrangian solutions which then become an upper bound to the optimal objective. Once the duality gap is sufficiently reduced, the sub-gradient routine is terminated. The availability of efficient commercial modeling software such as OPL Studio and CPLEX allows for larger instances of the problem to be tackled than previously possible.by Shawn Choo.S.M

    Recent breakthroughs in carrier depletion based silicon optical modulators

    No full text
    The majority of the most successful optical modulators in silicon demonstrated in recent years operate via the plasma dispersion effect and are more specifically based upon free carrier depletion in a silicon rib waveguide. In this work we overview the different types of free carrier depletion type optical modulators in silicon. A summary of some recent example devices for each configuration is then presented together with the performance that they have achieved. Finally an insight into some current research trends involving silicon based optical modulators is provided including integration, operation in the mid-infrared wavelength range and application in short and long haul data transmission link

    Bright Fluorescent Chemosensor Platforms for Imaging Endogenous Pools of Neuronal Zinc

    Get PDF
    AbstractA series of new fluorescent Zinpyr (ZP) chemosensors based on the fluorescein platform have been prepared and evaluated for imaging neuronal Zn2+. A systematic synthetic survey of electronegative substitution patterns on a homologous ZP scaffold provides a basis for tuning the fluorescence responses of “off-on” photoinduced electron transfer (PET) probes by controlling fluorophore pKa values and attendant proton-induced interfering fluorescence of the metal-free (apo) probes at physiological pH. We further establish the value of these improved optical tools for interrogating the metalloneurochemistry of Zn2+; the novel ZP3 fluorophore images endogenous stores of Zn2+ in live hippocampal neurons and slices, including the first fluorescence detection of Zn2+ in isolated dentate gyrus cultures. Our findings reveal that careful control of fluorophore pKa can minimize proton-induced fluorescence of the apo probes and that electronegative substitution offers a general strategy for tuning PET chemosensors for cellular studies. In addition to providing improved optical tools for Zn2+ in the neurosciences, these results afford a rational starting point for creating superior fluorescent probes for biological applications

    Imaging Mass Spectrometry Detection of Gangliosides Species Within the Mouse Brain Following Transient Focal Cerebral Ischemia

    Get PDF
    Gangliosides, a member of the glycosphingolipid family, are heterogeneously expressed in biological membranes and are particularly enriched within the central nervous system. Gangliosides consist of mono- or poly-sialylated oligosaccharide chains of variable lengths attached to a ceramide unit and are found to be intimately involved in brain disease development. The purpose of this study is to examine the spatial profile of ganglioside species using matrix-assisted laser desorption/ionization (MALDI) imaging (IMS) following middle cerebral artery occlusion (MCAO) reperfusion injury in the mouse. IMS is a powerful method to not only discriminate gangliosides by their oligosaccharide components, but also by their carbon length within their sphingosine base. Mice were subjected to a 30 min unilateral MCAO followed by long-term survival (up to 28 days of reperfusion). Brain sections were sprayed with the matrix 5-Chloro-2-mercaptobenzothiazole, scanned and analyzed for a series of ganglioside molecules using an Applied Biosystems 4800 MALDI TOF/TOF. Traditional histological and immunofluorescence techniques were performed to assess brain tissue damage and verification of the expression of gangliosides of interest. Results revealed a unique anatomical profile of GM1, GD1 and GT1b (d18∶1, d20∶1 as well as other members of the glycosphingolipid family). There was marked variability in the ratio of expression between ipsilateral and contralateral cortices for the various detected ganglioside species following MCAO-reperfusion injury. Most interestingly, MCAO resulted in the transient induction of both GM2 and GM3 signals within the ipsilateral hemisphere; at the border of the infarcted tissue. Taken together, the data suggest that brain region specific expression of gangliosides, particularly with respect to hydrocarbon length, may play a role in neuronal responses to injury

    Disparate exciton-phonon couplings for zone center and boundary phonons in solid-state graphite

    Full text link
    The exciton-phonon coupling in highly oriented pyrolytic graphite is studied using resonant inelastic X-ray scattering (RIXS) spectroscopy. With ~ 70 meV energy resolution, multiple low energy excitations associated with coupling to phonons can be clearly resolved in RIXS spectra. Using resonance dependence and the closed form for RIXS cross-section without considering the intermediate state mixing of phonon modes, the dimensionless coupling constant g is determined to be 5 and 0.4, corresponding to the coupling strength of 0.42 eV +/- 40 meV and 0.21 eV +/- 30 meV, for zone center and boundary phonons respectively. The reduced g value for zone-boundary phonon may be related to its double resonance nature.Comment: Main text is 20 pages with 4 figures Supplementary information is 10 pages with 3 figure

    Main Bearing Replacement and Damage − A Field Data Study on 15 Gigawatts of Wind Energy Capacity

    Get PDF
    This study seeks to establish a comprehensive baseline of knowledge for the replacement and damage of main bearings in wind turbines. The purpose of this report is to provide a high-level summary of the data set, methodology, and results of this work. Full technical details and an extended analysis will be made available in a future publication. We collected data on main bearing replacements and reported damage from industrial partners based in Europe and the United States. In total, we obtained data for 167 wind power plants, with a combined capacity of 15.3 gigawatts (GW). Most of the data set was comprised of land-based, three-point mount, spherical roller bearings. Within this data set were 689 instances of main bearing replacement. Analysis was undertaken in two parts: first, a statistical analysis of the main bearing time-to-replacement data using survival analysis techniques; second, quantitative and qualitative analyses of the obtained damage information. Our results showed that 10% of a fixed main bearing population would be expected to have been replaced by 10.5 years. This is close to half of the 20-year design value. Fitted parametric distributions then indicated that by year 20, between 22% and 25% of main bearings are expected to have been replaced. Analysis of the damage reports revealed spalling to be the main type of damage listed. The additional presence of surface damage in the collected data indicates that at least part of the spalling cases are likely due to surface-initiated rolling contact fatigue. At this stage is not clear what proportion of spalling cases result from "wear induced", surface-initiated and subsurface-initiated rolling contact fatigue. While this work provides important insights into the current state of main bearing replacements and damage, many questions remain. An ongoing and expanding data collection and analysis effort focused on wind turbine main bearings is therefore recommended

    The First Provenance Challenge

    No full text
    The first Provenance Challenge was set up in order to provide a forum for the community to help understand the capabilities of different provenance systems and the expressiveness of their provenance representations. To this end, a Functional Magnetic Resonance Imaging workflow was defined, which participants had to either simulate or run in order to produce some provenance representation, from which a set of identified queries had to be implemented and executed. Sixteen teams responded to the challenge, and submitted their inputs. In this paper, we present the challenge workflow and queries, and summarise the participants contributions

    Impact of changing the measles vaccine vial size on Niger's vaccine supply chain: a computational model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many countries, such as Niger, are considering changing their vaccine vial size presentation and may want to evaluate the subsequent impact on their supply chains, the series of steps required to get vaccines from their manufacturers to patients. The measles vaccine is particularly important in Niger, a country prone to measles outbreaks.</p> <p>Methods</p> <p>We developed a detailed discrete event simulation model of the vaccine supply chain representing every vaccine, storage location, refrigerator, freezer, and transport device (e.g., cold trucks, 4 × 4 trucks, and vaccine carriers) in the Niger Expanded Programme on Immunization (EPI). Experiments simulated the impact of replacing the 10-dose measles vial size with 5-dose, 2-dose and 1-dose vial sizes.</p> <p>Results</p> <p>Switching from the 10-dose to the 5-dose, 2-dose and 1-dose vial sizes decreased the average availability of EPI vaccines for arriving patients from 83% to 82%, 81% and 78%, respectively for a 100% target population size. The switches also changed transport vehicle's utilization from a mean of 58% (range: 4-164%) to means of 59% (range: 4-164%), 62% (range: 4-175%), and 67% (range: 5-192%), respectively, between the regional and district stores, and from a mean of 160% (range: 83-300%) to means of 161% (range: 82-322%), 175% (range: 78-344%), and 198% (range: 88-402%), respectively, between the district to integrated health centres (IHC). The switch also changed district level storage utilization from a mean of 65% to means of 64%, 66% and 68% (range for all scenarios: 3-100%). Finally, accounting for vaccine administration, wastage, and disposal, replacing the 10-dose vial with the 5 or 1-dose vials would increase the cost per immunized patient from 0.47USto0.47US to 0.71US and $1.26US, respectively.</p> <p>Conclusions</p> <p>The switch from the 10-dose measles vaccines to smaller vial sizes could overwhelm the capacities of many storage facilities and transport vehicles as well as increase the cost per vaccinated child.</p
    corecore